《你所不知道的糖》

开放实验项目

实验指导书

编写人: 熊嫣

分析测试中心

二零二零年九月

实验项目一 核磁共振波谱仪实验

一、实验目的

1. 使学生掌握核磁共振的基本原理及应用

2. 使学生了解核磁共振波谱仪的结构

3. 使学生掌握样品的制备

4. 使学生学会利用核磁共振波谱仪进行氢谱和碳谱测试

5. 使学生掌握基本的数据处理

二、实验原理

核磁共振(Nuclear Magnetic Resonance),是指具有磁矩的原子核(原子核自旋量 子 I≠0 的核)在静磁场中,受电磁波(通常为射频电磁振荡波 RF)激发,而产生的共 振跃迁现象。

所有的原子核都带电荷,都围绕某个轴自身做旋转运动,这种自旋转动称为核的自 旋运动,自旋的原子核会绕某个轴旋转,旋转时会产生一定微弱的磁场和磁矩;当放置 于一个均匀的静磁场(恒定的磁场)环境中,受磁场作用,原子核的自旋轴会被强制定 向,与磁场方向相同或相反。

图 1 无外磁场与施加外磁场作用下的原子核

施加外磁场时,产生两种情况:

1) 与磁场平行,能量低,磁量子数 m=+ %

2) 与磁场相反,能量高,磁量子数 m=+ ½

有了一个恒定的磁场环境,但 NMR 的激发需要核自旋体系吸收能量,能量则来源于一个由变化的电场所产生的震荡的射频电磁辐射,这就是 RF 射频脉冲。假设我们在

恒定磁场垂直方向上施加一个射频电磁场,这个射频电磁场会象旋进的质子一样旋转, 这就引起了角速度的变化,使其等于质子旋进的角速度,由此产生了共振。在经过傅里 叶变换即得到了核磁谱图。

图 2 核磁共振形成的基本过程

NMR 波谱按照测定对象分类可分为:¹H-NMR 谱(测定对象为氢原子核)、¹³C-NMR 谱(测定对象为碳原子核)及杂核谱(氟谱、磷谱、氮谱)等。有机化合物、高分子材料都主要由碳、氢组成,所以在材料结构与性能研究中,以¹H 谱和 ¹³C 谱应用最为广泛。

三、实验基本要求。

- 1. 掌握了解核磁共振的相关概念
- 2. 掌握核磁谱图基本类型及相关参数
- 3. 掌握基本的谱图处理与解析
- 4. 严格遵守实验室安全制度,保证设备人员安全
- 5. 实验结束后,认真填写实验报告

四、实验仪器和材料

1. 实验仪器:

Bruker 400MHz 核磁共振波谱仪, 由德国布鲁克生产, 质子共振频率: 400.16 MHz, BBFO 双共振探头, 可检测 ¹H 和 ¹⁹F, ¹⁵N ~ ³¹P 之间的所有核。

2. 实验材料:

葡萄糖作为样品; 氘代试剂(DMSO), 用于锁场, 匀场; 标准 5 mm 核磁管, 用于样品的存放; 标准 5 mm 转子, 用于支撑样品;

五、实验学时数与实验内容

- 1. 实验学时数: 10 学时
- 2. 实验内容:
- (1) 讲解核磁共振理论基本原理(0.5 学时)
- (2)介绍核磁共振波谱仪的结构及工作原理 (0.5 学时)
- (3) 讲解实验的注意事项,并演示实验操作步骤 (1学时)
- (4) 学生制备样品以及上机操作 (7 学时)
- (5) 数据处理讲解 (1学时)

六、实验步骤

 回顾核磁共振基本原理,以及详细的的介绍核磁共振波谱仪的结构组成以及工作原 理。

Bruker 400MHz 核磁共振仪,质子共振频率为 400.16 MHz。采用最新进的 Ascend[™] 超导磁体,内部充有液氦和液氮,为磁体提供超低温环境; BBFO 双共振宽带探头,可检测 ¹H 和 ¹⁹F, ¹⁵N ~ ³¹P 之间的所有核; AVANCE III HD 最新型机柜内置预制脉冲程 序可用于复杂的一维、二维 NMR 实验; TopSpin 3.5 数据采集控制软件和 ICON-NMR 自动化处理软件, SampleXpress 60 空位的自动加样器。

图 3 核磁共振波谱仪基本构造图

- 2. 学生进行样品的制备以及上机操作
- (1)样品制备

将称量好的样品放置核磁管内,样品质量一般控制在 15 mg 左右,由于 ¹H 和 ¹³C 的天然丰度不同,¹³C 的天然丰度低于 ¹H 的天然丰度。

加入分支瓶装的氘代试剂(DMSO),使样品充分溶解在氘代试剂中;加盖核磁管 帽。并在核磁管上注明样品名称,以便区分样品。

(2) 上机操作实验

氢谱测试:

- a) 更改 user, 点击 OK, 进入 Automation 窗口。
- b) 将样品放入到相应的 Holder ,记下其 Holder 号。
- c) 在 Experiments Table 中设置实验,双击相应的 Holder,设置实验参数,Disk 选择数据保存目录(不用更改),Name 填写样品名称,No选择 Expno,Solvent 选择氘带溶剂,Experiment 选择标准实验(N PROTON),Par 可以修改参数(只可更改 NS),设置好后,选中实验点击 Submit 提交,Automation 将依次完成所提交的实验。

d) 点击 Add 可添加新的实验(同一 Holder 的不同谱类)。

碳谱测试:

- a) 更改 user, 点击 OK, 进入 Automation 窗口。
- b) 将样品放入到相应的 Holder ,记下其 Holder 号。
- c) 在 Experiments Table 中设置实验,双击相应的 Holder,设置实验参数,Disk 选择数据保存目录(不用更改),Name 填写样品名称,No选择 expno,Solvent 选择氘代溶剂 DMSO,Experiment 选择标准实验(NC13CPD),Par 可以修改 参数(只可更改 NS),设置好后,选中实验点击 Submit 提交,Automation 将依 次完成所提交的实验。

七、实验结果与数据处理

介绍核磁处理软件 MestreNova 的使用,对所测得谱图进行积分和位移的标注,并 导出实验及结果。

图 4 氢谱进行积分和标峰,确定氢的个数和位置,确定该物质氢原子个数

图 5 碳谱进行标峰,确定碳的个数和位置,确定该物质碳原子个数

八、实验注意事项

- 1. 样品称量过程要仔细,称量不可过多过少,以免影响谱图的分辨率。
- 实验前,明确样品的成分。核磁共振不可测含有盐,酸浓度较高的样品以及顺磁性物质。
- 3. 实验进行前,先更换 user,以免数据放置其他 user 名下。
- 4. 记清自己样品所在的 Holder, 以免造成仪器无法识别样品, 而出现的样品无法测试。
- 5. 明确样品所使用的氘代试剂,以免造成锁场失败。

九、其他说明

由于核磁共振波谱仪内含有超导磁体,因此在进行核磁共振试验时,不可将还有磁性的物质接近磁铁(钥匙、磁卡、手机、心脏起搏器等含有磁性物质),放置于实验操作台上。实验室严禁打闹,遵循实验室老师的指导进行实验。

实验项目二 X-射线单晶衍射实验

一、实验目的

1. 使学生掌握 X-射线衍射的基本原理及应用

2. 使学生了解 X-射线单晶衍射仪的结构

3. 使学生掌握样品的挑选

4. 使学生学会利用 X-射线单晶衍射仪进行数据的收集

5. 使学生了解基本的数据解析处理过程

二、实验原理

在晶态物质中,原子、分子或离子的排列具有周期性和对称性,当一束单色 X 射 线入射到晶体时,晶体中排列规则的原子间距离与入射 X 射线波长有相同数量级,不 同原子散射的 X 射线相互干涉,产生干涉效应,形成数目甚多、波长不变、在空间上 形成特定的衍射。测量这些衍射方向和强度,并根据晶体学理论导出晶体中原子的排列 情况,得到晶体结构。

晶体衍射实验所得到的结果只有晶胞参数、空间群和衍射强度数据,远未达到解析的目的。这是因为X射线晶体衍射无法得到衍射点的相角信息。只要得到衍射点的相角。 角 α hkl,就解决了单晶解析的关键问题;即确定晶胞中原子的精确位置(衍射点的相角)。

解决相位的方法主要有直接法 Direct methods、Patterson methods 和 Charge Flipping。

得到衍射数据后,需要对衍射强度 (I_0) 进行还原和校正,转换为结构因子 ($|F_{hkl}|$) 的绝对值,即结构振幅 $|F_0|$ 。根据结构因子的表达式,任一衍射点 (hkl) 的振幅 $|F_0|$ 与结构因子的关系为:

$$F_{hkl} = \sum_{i} f_{i} [\cos 2\pi (hx_{i} + ky_{i} + lz_{i}) + i \sin 2\pi (hx_{i} + ky_{i} + lz_{i})] = |F_{hkl}| \exp(i\alpha_{hkl})$$
(1)

式1中:

α_{hkl}就是衍射点(hkl)的相角

另一方面,根据晶体学和数学原理,晶胞中电子密度与结构因子关系如下:

$$\rho_{xyz} = \frac{1}{V} \sum_{hkl} F_{hkl} \cdot e^{-i2\pi(hx+ky+lz)}$$

对每个衍射点的结构因子进行加和,即傅里叶加和(简称 FT)就可以得到晶胞中 任意坐标的电子密度。晶胞中不同电子密度的峰对应于不同原子,获得电子密度分布图, 实际上就得到晶体结构的详细信息。

(2)

图1 衍射强度和电子密度

三、实验基本要求

- 1. 了解 X-射线的相关概念。
- 2. 掌握 X-射线单晶衍射仪的基本实验操作
- 3. 实验过程中遇到问题,要及时与老师沟通,不可私自解决。
- 4. 实验结束后,认真填写实验报告。

四、实验仪器和材料

1. 实验仪器:

本实验所使用的仪器为 Bruker APEX II DUO X-射线单晶衍射仪。CCD 探测器,X 射线源为阳极 Mo 靶,波长为 0.71Å。

2. 实验材料:

葡萄糖作为样品;体视 40 倍显微镜,用于晶体的挑选; loop 晶体环,用于支撑样品。

- 五、实验学时数与实验内容
- 1. 实验学时数:7学时
- 2. 实验内容:
- (1) 讲解实验及数据分析的原理(X-射线理论)(0.5 学时)
- (2)介绍 X-射线衍射仪结构及工作原理 (0.5 学时)
- (3) 讲解实验的注意事项,并演示实验操作步骤 (0.5 学时)
- (4) 学生上机操作实验 (5 学时)
- (5) 数据分析讲解 (0.5 学时)

六、实验步骤

1. 样品挑选

在体视 40 倍显微镜下,挑选质量大小合适的晶体(0.3mm*0.3mm*0.3mm),晶体选 择棱角分明、无裂痕、表面干净、相对较厚的晶体。如挑选质量较差的晶体,将影响衍 射效果。随后用真空脂粘粘在玻璃丝上。

- 2. 样品测定
- a) 安置晶体,对样品进行对心

使测角仪回到初始 Mount 位置,将晶体小心的放置于载晶座上。使用专用螺丝刀结合 Spin phi 90 和 Spin phi 180 调整晶体使其位于测角仪中心。

b) 对晶体进行初筛

先预扫一下,查看晶体衍射点的强度,以此来判断晶体质量的好坏。如图 2 为一张 高质量的晶体衍射图。

图 2 高质量晶体衍射图

3. 确定晶胞参数,确定晶胞参数;选择适当的收集策略进行衍射数据的收集。

七、实验结果与数据处理

1. 数据还原与校正

对衍射数据进行还原与校正(Intergrate、Scale)。将衍射强度和相应背景测量时间 等原始数据经过处理和校正以产生相应的|Fo|值。通过直接法 Direct methods、Patterson methods 和 Charge Flipping,得到晶体中每个原子的相应相位,经傅里叶变换,计算出 晶体空间电子密度云,获得原子坐标信息,通过精修得到接近真实情况的结构模型。 2. 晶体解析软件 SHELX,对数据进行精修解析,用 Diamond 画出晶体结构图。

图 3 使用 SHELX 进行解析,得到糖的结构分子式

八、实验注意事项

- 1. 样品要挑选大小合适,质量较好的晶体,以免影响衍射数据收集。
- 2. 样品位置要位于测角仪的中心,以免 X-射线衍射不到样品上。
- 对心上样时,不可碰触探测仪前方的档管,以免造成射线直接对准探测器,而造成 探测器损坏。

九、其他说明

衍射实验涉及到 X-射线,要做好一定防护措施,严禁在实验室打闹,以及仪器在 进行实验时,严禁中断实验,应严格按照实验流程进行,清楚每一步的操作流程。

实验项目三 X-射线粉末衍射实验

一、实验目的

- 1. 使学生掌握 X-射线衍射的基本原理及应用
- 2. 使学生了解 X-射线粉末衍射仪的结构
- 3. 使学生掌握基本的样品制备
- 4. 使学生学会利用 X-射线粉末衍射仪进行样品的测定
- 5. 使学生了解基本的数据处理

二、实验原理

在晶态物质中,原子、分子或离子的排列具有周期性和对称性,因此晶体可以作为 X 射线的空间衍射光栅,即当一束 X 射线通过晶体发生衍射时,衍射波相互叠加使射 线的强度在某些方向上加强,在其他方向上减弱。在粉末衍射中怎样来表达这些衍射信 号方向呢,英国著名物理学家布拉格父子,通过对 X 射线谱的研究,建立了 Bragg 方 程(布拉格定律),以此来表达 X 射线衍射方向:其表达式为

$$2d\sin\theta = n\lambda \tag{1}$$

(1) 式中:

d为晶面间距,时域晶体本身结构直接相关的参数

θ为入射束与反射面的夹角,即 Bragg 角,实验中直接测得的物理量

λ为 X 射线的波长,由衍射仪的阳极靶材(Cu)产生,波长为 1.54 Å

n为衍射级数,其含义是:只有照射到相邻两镜面的光程差是 X 射线波长的 n 倍时 才产生衍射,通常 n=1

图1X-射线衍射方向

在粉末实验中,衍射方向由晶胞大小决定,而衍射强度主要由晶胞中原子的位置和 种类决定。衍射强度可以用绝对值和相对值来表示,绝对强度:即X射线的能量,一 般无测量意义;相对强度:即同一衍射图样上各衍射线强度之比。

三、实验基本要求

1. 了解 X-射线的相关概念

2. 掌握基本数据处理(Origin 作图及粉末数据解析)

3. 实验过程中遇到问题,要及时与老师沟通,不可私自解决。

4. 实验结束后,认真填写实验报告

四、实验仪器和材料

1. 实验仪器:

本实验所使用的仪器为 Rigaku Ultima IV X-射线粉末衍射仪。CCD 探测器, x-射线源为阳极 Cu 靶, 波长为 1.54Å。

2. 实验材料:

葡萄糖作为样品;研钵,用于样品的研磨;乙醇,用于清洗样品架;样品架,用于 盛放支撑样品;载玻片,药匙,无尘纸。

五、实验学时数与实验内容

- 1. 实验学时数:7学时
- 2. 实验内容:
- (1) 讲解实验及数据分析的原理(x-射线理论)(0.5 学时)
- (2)介绍 X-射线衍射仪结构及工作原理 (0.5 学时)
- (3) 讲解实验的注意事项,并演示实验操作步骤 (0.5 学时)
- (4) 学生上机操作实验 (5 学时)
- (5) 数据分析讲解 (0.5 学时)

六、实验步骤

1. 仪器基本构造原理

粉末衍射仪主要由射线源、测角仪、探测器以及其他辅助设备组成。

图 2 X 光管及 X 射线测量系统

Rigaku Ultima IV X-射线粉末衍射仪为封闭式 X-光管,采用 Cu 阳极靶材,为测 量提供稳定的射线源,波长为 1.54Å;测角仪是 X 射线衍射仪的核心部件,由光源臂、 检测器臂和狭缝系统组成。测角仪又分为垂直式和水平式。本仪器采用垂直式,样品固 定不动,光源和探测器仪以0-0耦合方式联动。探测器主要用于记录衍射数据。其他辅助设备单色器、滤色片。

2. 样品制备

将样品研磨成粉末状,平铺在样品加上。并用载玻片将样品磨平,确保样品的高度 与样品架的高度保持一致,避免样品表面凹凸不平。如果样品表面凹凸不平,会造成参 与布拉格衍射的晶面减少,衍射峰叠加,造成衍射角度的偏差,最终影响谱图的分辨率。

3. 样品测定

(1) 按仪器门上的"Door Lock"按钮,向左,右拉开仪器门,放入样品。

(2) 关仪器门,再按一下"Door Lock"按钮(门锁上,提示音消失)。

(3) 打开"My Computer",在"D:/DATA"目录下建立导师名目录,在目录下建立自己的相关目录

(4) 双击桌面"Standard measurement"图标,出现"Standard measurement"对话框。

(5) 在 "Standard measurement"对话框中,双击 "Condition"下的数字,确定样品 测试的模式,即 "Start angle"、 "Stop angle"、 "Scan Speed"。

(6) 在"Standard measurement"对话框中,输入样品测试的文件信息,即子目录路径, "Folder name",文件名"File name"及样品名称"Sample name"。

(7) 点击 "Executing measurement"图标 選,出现 "Right console"对话框,仪器开 始自动扫描检测并保存数据。

七、实验结果与数据处理

实验数据以 raw、txt 文本格式进行保存,使用 Origin 作图,将实验数据以图片格 式保留,运用 Jade 软件进行样品晶粒尺寸的计算

图 3 某化合物 X-射线衍射图

八、实验注意事项

- 1. 制备样品,应充分将样品进行研磨。
- 研磨后的样品,应平铺在样品槽内,用玻璃品进行按压,目的是防止样品表面忽高 忽低,影响测试结果。
- 设置实验条件,起始角度不可低于 5°,过低的起始角度,会造成射线直接衍射至 探测器中,损伤探测器。
- 4. 设置扫描速度,过快的扫描速度将会造成基线的不平整,以及影响谱图的分辨率,因此要选择适当的扫速,建议扫速 2-3°/min。

九、其他说明

衍射实验涉及到 X-射线,要做好一定防护措施,保证自身安全,严禁在实验室打闹,以及仪器在进行实验时,严禁中断实验,应严格按照实验流程进行,清楚每一步的操作流程。